DPCalib: Dual-Perspective View Network for LiDAR-Camera Joint Calibration

Author:

Cao Jinghao1,Yang Xiong1,Liu Sheng1,Tang Tiejian1ORCID,Li Yang1ORCID,Du Sidan1

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

Abstract

The precise calibration of a LiDAR-camera system is a crucial prerequisite for multimodal 3D information fusion in perception systems. The accuracy and robustness of existing traditional offline calibration methods are inferior to methods based on deep learning. Meanwhile, most parameter regression-based online calibration methods directly project LiDAR data onto a specific plane, leading to information loss and perceptual limitations. A novel network, DPCalib, a dual perspective view network that mitigates the aforementioned issue, is proposed in this paper. This paper proposes a novel neural network architecture to achieve the fusion and reuse of input information. We design a feature encoder that effectively extracts features from two orthogonal views using attention mechanisms. Furthermore, we propose an effective decoder that aggregates features from two views, thereby obtaining accurate extrinsic parameter estimation outputs. The experimental results demonstrate that our approach outperforms existing SOTA methods, and the ablation experiments validate the rationality and effectiveness of our work.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3