Enriching Language Models with Graph-Based Context Information to Better Understand Textual Data

Author:

Roethel Albert1ORCID,Ganzha Maria1ORCID,Wróblewska Anna12ORCID

Affiliation:

1. Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa Street 75, 00-662 Warsaw, Poland

2. weSub S.A., Adama Branickiego Street 15, 02-972 Warsaw, Poland

Abstract

A considerable number of texts encountered daily are somehow connected. For example, Wikipedia articles refer to other articles via hyperlinks, or scientific papers relate to others via citations or (co)authors; tweets relate via users that follow each other or reshare content. Hence, a graph-like structure can represent existing connections and be seen as capturing the “context” of the texts. The question thus arises of whether extracting and integrating such context information into a language model might help facilitate a better-automated understanding of the text. In this study, we experimentally demonstrate that incorporating graph-based contextualization into the BERT model enhances its performance on an example of a classification task. Specifically, in the Pubmed dataset, we observed a reduction in balanced mean error from 8.51% to 7.96%, while increasing the number of parameters just by 1.6%.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Reference21 articles.

1. Horta Ribeiro, M., Calais, P., dos Santos, Y., Almeida, V., and Meira, W. (2018, January 25–28). Characterizing and Detecting Hateful Users on Twitter. Proceedings of the International AAAI Conference on Web and Social Media, Palo Alto, CA, USA.

2. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, USA.

3. A context-aware citation recommendation model with BERT and graph convolutional networks;Jeong;Scientometrics,2020

4. Ostendorff, M., Bourgonje, P., Berger, M., Schneider, J.M., Rehm, G., and Gipp, B. (2019, January 9–11). Enriching BERT with Knowledge Graph Embeddings for Document Classification. Proceedings of the 15th Conference on Natural Language Processing, KONVENS 2019, Erlangen, Germany.

5. Pytorch-BigGraph: A Large Scale Graph Embedding System;Lerer;Proc. Mach. Learn. Syst.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3