Unstructured Document Information Extraction Method with Multi-Faceted Domain Knowledge Graph Assistance for M2M Customs Risk Prevention and Screening Application

Author:

Tian Fengchun1ORCID,Wang Haochen1,Wan Zhenlong2,Liu Ran1ORCID,Liu Ruilong1,Lv Di1,Lin Yingcheng1ORCID

Affiliation:

1. The School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

2. National Information Center of GACC, Beijing 100010, China

Abstract

As a crucial national security defense line, the existing risk prevention and screening system of customs falls short in terms of intelligence and diversity for risk identification factors. Hence, the urgent issues to be addressed in the risk identification system include intelligent extraction technology for key information from Customs Unstructured Accompanying Documents (CUADs) and the reliability of the extraction results. In the customs scenario, OCR is employed for M2M interactions, but current models have difficulty adapting to diverse image qualities and complex customs document content. We propose a hybrid mutual learning knowledge distillation (HMLKD) method for optimizing a pre-trained OCR model’s performance against such challenges. Additionally, current models lack effective incorporation of domain-specific knowledge, resulting in insufficient text recognition accuracy for practical customs risk identification. We propose a customs domain knowledge graph (CDKG) developed using CUAD knowledge and propose an integrated CDKG post-OCR correction method (iCDKG-PostOCR) based on CDKG. The results on real data demonstrate that the accuracies improve for code text fields to 97.70%, for character type fields to 96.55%, and for numerical type fields to 96.00%, with a confidence rate exceeding 99% for each. Furthermore, the Customs Health Certificate Extraction System (CHCES) developed using the proposed method has been implemented and verified at Tianjin Customs in China, where it has showcased outstanding operational performance.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3