An Enhanced Power Allocation Strategy for Microgrids Considering Frequency and Voltage Restoration

Author:

Yang Chunguang1,Wu Xue2,Song Qichao1,Wu Haoyu2,Zhu Yixin2

Affiliation:

1. School of Control Technology, Wuxi Institute of Technology, Wuxi 214121, China

2. School of Lot Engineering, Jiangnan University, Wuxi 214122, China

Abstract

In a microgrid, load power should be properly shared among multiple distributed generation (DG) units, not only for fundamental power but also for negative sequence and harmonic power. In this paper, the operation of a microgrid under imbalance and nonlinear load conditions is studied, and a consensus algorithm-based distributed control strategy is proposed for the microgrid power allocation, frequency, and voltage restoration. First of all, the output current of DG unit is decomposed by second-order generalized integrator (SOGI) modules to obtain the fundamental power and harmonic power through the power calculation formula. Then, state values of DG units, such as local power, frequency, and voltage, are transmitted on a sparse communication network. Under the action of a consensus algorithm, the real power of DG units is allocated following the equal increment principle; the reactive power, imbalance, and harmonic power are allocated according to the capacities of DG units; and the frequency of the microgrid and the voltage at the point of common coupling (PCC) are rated. In the consensus-based strategy, DG units only communicate with their neighbor units; thus, the “plug and play” function is reserved. Compared with the centralized control strategy, the proposed strategy with a distributed consensus protocol can simplify the maintenance and possible expansions of the system, making the microgrid more flexible. Moreover, as the structure of the detailed network is not required, it is easy to apply in practice. Simulation and experiment results are presented to verify the proposed method.

Funder

the 74th batch of general support from the China Postdoctoral Foundation

Publisher

MDPI AG

Reference29 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3