An Optimized Fault-Ride-Through Control Strategy of Hybrid MMC with Fewer FBSMs

Author:

Chen Yue1,Ren Chenglin1,Sheng Junyi2,Wang Jinyu3,Zhou Yuebin4,Cao Wanyu4,Ding Runtian2,Wang Wujun2

Affiliation:

1. EHV Power Transmission Company, China Southern Power Grid Company Limited (CSG), Guangzhou 510620, China

2. TBEA China Xinjiang Sunoasis Co., Ltd., Urumqi 830011, China

3. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

4. State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid Company Limited (CSG), Guangzhou 510663, China

Abstract

The modular multilevel converter (MMC) has many advantages of low switching losses, good harmonic performance and high modularity structure in state-of-the-art HVDC applications. The full-bridge submodules (FBSMs) of the hybrid MMC can inherently output negative voltage to absorb fault currents, and consequently the hybrid MMC can ride through severe DC faults without blocking. During the DC fault-ride-through process, the submodule capacitor voltage and arm current of the MMC will be temporarily increased. These characteristics limit the proportion of the FBSMs, which should not be too low and thus increase the cost and operating losses of the hybrid MMC. In this paper, an improved sorting algorithm of SM capacitor voltage is established, and a novel virtual damping control strategy is proposed that can effectively suppress the increase in submodule capacitor voltage and arm current of the hybrid MMC during the DC fault-ride-through process. By adopting this optimization control, the proportion of FBSMs can be reduced significantly without deteriorating the fault-ride-through capability or safety of the MMC. The effectiveness of the proposed control is verified by careful theoretical analysis and detailed simulation results.

Funder

National Key Research and Development Plan Project

Sichuan Province Science and Technology Plan Project

Key R&D Project of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3