Searching for a Cheap Robust Steering Controller

Author:

Vidano Trevor1ORCID,Assadian Francis1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, College of Engineering, University of California, Davis, CA 95616, USA

Abstract

The study of lateral steering control for Automated Driving Systems identifies new control solutions more often than new control problems. This is likely due to the maturity of the field. To prevent repeating efforts toward solving already-solved problems, what is needed is a cohesive way of evaluating all developed controllers under a wide variety of environmental conditions. This work serves as a step in this direction. Four controllers are tested on five maneuvers representing highways and collision avoidance trajectories. Each controller and maneuver combination is repeated on five sets of environmental conditions or Operational Design Domains (ODDs). The design of these ODDs ensures the translation of these experimental results to real-world applications. The commercial software, CarSim 2020, is extended with Simulink models of the environment, sensor dynamics, and state estimation performances to perform highly repeatable and realistic evaluations of each controller. The results of this work demonstrate that most of the combinations of maneuvers and ODDs have existing cheap controllers that achieve satisfactorily safe performance. Therefore, this field’s research efforts should be directed toward finding new control problems in lateral path tracking rather than proposing new controllers for ODDs that are already solved.

Funder

U.S. Department of Transportation’s

Publisher

MDPI AG

Reference71 articles.

1. Gardels, K. (1960). Automatic Car Controls for Electronic Highways, General Motors Research Labs.

2. Ioannou, P.A. (1997). Automated Highway Systems, Springer.

3. Analysis of Automatic Steering Control for Highway Vehicles with Look-down Lateral Reference Systems;Guldner;Veh. Syst. Dyn.,1996

4. On the steering of automated vehicles: Theory and experiment;Fenton;IEEE Trans. Autom. Control,1976

5. Consumer Reports Inc. (2021). Understanding the Current State of Vehicle Automation, Consumer Reports Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3