Affiliation:
1. School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China
Abstract
D2D edge computing is a promising solution to address the conflict between limited network capacity and increasing application demands, where mobile devices can offload their tasks to other peer devices/servers for better performance. Task offloading is critical to the performance of D2D edge computing. Most existing works on task offloading assume the task processing time is known or can be accurately estimated. However, the processing time is often uncertain until it is finished. Moreover, the same task can have largely different execution times under different scenarios, which leads to inaccurate offloading decisions and degraded performance. To address this problem, we propose a game-based probabilistic task offloading scheme with an uncertain processing time in D2D edge networks. First, we characterize the uncertainty of the task processing time using a probabilistic model. Second, we incorporate the proposed probabilistic model into an offloading decision game. We also analyze the structural properties of the game and prove that it can reach a Nash equilibrium. We evaluate the proposed work using real-world applications and datasets. The experimental results show that the proposed probabilistic model can accurately characterize the uncertainty of completion time, and the offloading algorithm can effectively improve the overall task completion rate in D2D networks.
Reference47 articles.
1. Fog and IoT: An Overview of Research Opportunities;Chiang;IEEE Internet Things J.,2017
2. Zhang, W., Li, S., Liu, L., Jia, Z., and Raychaudhuri, D. (May, January 29). Hetero-Edge: Orchestration of Real-time Vision Applications on Heterogeneous Edge Clouds. Proceedings of the IEEE International Conference on Computer Communications (INFOCOM) 2019, Paris, France.
3. Edge computing for autonomous driving: Opportunities and challenges;Liu;Proc. IEEE,2019
4. ENORM: A framework for edge node resource management;Wang;IEEE Trans. Serv. Comput.,2017
5. Task co-offloading for D2D-assisted mobile edge computing in industrial internet of things;Dai;IEEE Trans. Ind. Informat.,2022