Advancements in PCB Components Recognition Using WaferCaps: A Data Fusion and Deep Learning Approach

Author:

Starodubov Dmitrii1,Danishvar Sebelan1ORCID,Abu Ebayyeh Abd Al Rahman M.2ORCID,Mousavi Alireza1ORCID

Affiliation:

1. Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK

2. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Abstract

Microelectronics and electronic products are integral to our increasingly connected world, facing constant challenges in terms of quality, security, and provenance. As technology advances and becomes more complex, the demand for automated solutions to verify the quality and origin of components assembled on printed circuit boards (PCBs) is skyrocketing. This paper proposes an innovative approach to detecting and classifying microelectronic components with impressive accuracy and reliability, paving the way for a more efficient and safer electronics industry. Our approach introduces significant advancements by integrating optical and X-ray imaging, overcoming the limitations of traditional methods that rely on a single imaging modality. This method uses a novel data fusion technique that enhances feature visibility and detectability across various component types, crucial for densely packed PCBs. By leveraging the WaferCaps capsule network, our system improves spatial hierarchy and dynamic routing capabilities, leading to robust and accurate classifications. We employ decision-level fusion across multiple classifiers trained on different representations—optical, X-ray, and fused images—enhancing accuracy by synergistically combining their predictive strengths. This comprehensive method directly addresses challenges surrounding concurrency, reliability, availability, and resolution in component identification. Through extensive experiments, we demonstrate that our approach not only significantly improves classification metrics but also enhances the learning and identification processes of PCB components, achieving a remarkable total accuracy of 95.2%. Our findings offer a substantial contribution to the ongoing development of reliable and accurate automatic inspection solutions in the electronics manufacturing sector.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3