Cooperative Decisions of a Multi-Agent System for the Target-Pursuit Problem in Manned–Unmanned Environment

Author:

Han Le12,Song Weilong12,Yang Tingting12,Tian Zeyu12,Yu Xuewei123,An Xuyang12

Affiliation:

1. China North Artificial Intelligence & Innovation Research Institute, Beijing 100072, China

2. Collective Intelligence & Collaboration Laboratory (CIC Lab), Beijing 100072, China

3. College of Artificial Intelligence, Nankai University, Tianjin 300071, China

Abstract

With the development of intelligent technology, multi-agent systems have been widely applied in military and civilian fields. Compared to a single platform, multi-agent systems can complete more dangerous, difficult, and heavy tasks. However, due to the limited autonomy of unmanned platforms and the regulatory needs of personnel, multi-agent systems cooperating with manned platforms to perform tasks have been more widely promoted at this stage of development. This paper addresses a differential game method for cooperative decision-making of a multi-agent system cooperating with the manned platform for the target-pursuit problem. The manned platform pursues the target according to a certain trajectory, and its state can be obtained by the multi-agent system. Firstly, for the case that the target moves with a fixed trajectory, the target-pursuit problem in a manned–unmanned environment is viewed in the form of game based on a communication graph among agents. Secondly, strategies of all agents are proposed while maintaining their group cohesion. A set of coupled differential equations is solved to implement strategy calculation. Compared to purely unmanned systems, the strategies combine the advantages of the manned platform and add a reference item, which can achieve team cohesion relatively quickly. Furthermore, a brief analysis is made on the scenarios where the target is in another case or adopts other strategies. Finally, comparative simulations have verified the effectiveness and synergy of the strategy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3