Efficient and Lightweight Visual Tracking with Differentiable Neural Architecture Search

Author:

Gao Peng12ORCID,Liu Xiao1,Sang Hong-Chuan1,Wang Yu13,Wang Fei4

Affiliation:

1. School of Cyber Science and Engineering, Qufu Normal University, Qufu 273165, China

2. Yuntian Group, Dezhou 253700, China

3. Network and Information Center, Qufu Normal University, Qufu 273165, China

4. School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

Over the last decade, Siamese network architectures have emerged as dominating tracking paradigms, which have led to significant progress. These architectures are made up of a backbone network and a head network. The backbone network comprises two identical feature extraction sub-branches, one for the target template and one for the search candidate. The head network takes both the template and candidate features as inputs and produces a local similarity score for the target object in each location of the search candidate. Despite promising results that have been attained in visual tracking, challenges persist in developing efficient and lightweight models due to the inherent complexity of the task. Specifically, manually designed tracking models that rely heavily on the knowledge and experience of relevant experts are lacking. In addition, the existing tracking approaches achieve excellent performance at the cost of large numbers of parameters and vast amounts of computations. A novel Siamese tracking approach called TrackNAS based on neural architecture search is proposed to reduce the complexity of the neural architecture applied in visual tracking. First, according to the principle of the Siamese network, backbone and head network search spaces are constructed, constituting the search space for the network architecture. Next, under the given resource constraints, the network architecture that meets the tracking performance requirements is obtained by optimizing a hybrid search strategy that combines distributed and joint approaches. Then, an evolutionary method is used to lighten the network architecture obtained from the search phase to facilitate deployment to devices with resource constraints (FLOPs). Finally, to verify the performance of TrackNAS, comparison and ablation experiments are conducted using several large-scale visual tracking benchmark datasets, such as OTB100, VOT2018, UAV123, LaSOT, and GOT-10k. The results indicate that the proposed TrackNAS achieves competitive performance in terms of accuracy and robustness, and the number of network parameters and computation volume are far smaller than those of other advanced Siamese trackers, meeting the requirements for lightweight deployment to resource-constrained devices.

Funder

China Postdoctoral Science Foundation

Qufu Normal University

Shandong Provincial Natural Science Foundation

Guangdong Provincial Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3