Double Deep Q-Network Next-Generation Cyber-Physical Systems: A Reinforcement Learning-Enabled Anomaly Detection Framework for Next-Generation Cyber-Physical Systems

Author:

Zhang Yinjun1,Jamjoom Mona2ORCID,Ullah Zahid3ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangxi Science and Technology Normal University, Liuzhou 545004, China

2. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia

3. Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

In this work, we considered the problem of anomaly detection in next-generation cyber-physical systems (NG-CPS). For this, we used a double deep Q-network-enabled framework, where an agent was trained to detect anomalies in the traffic that does not match the behavior of the legitimate traffic at the end side. Furthermore, the proposed paradigm recognizes known and unknown anomalies by directly engaging with a simulation environment. Given that, it progressively develops its interpretation of anomalies to encompass new, previously unrecognized classes of anomalies by proactively exploring probable anomalies in data that have not been labeled. The method achieves this by concurrently optimizing the use of a limited amount of labeled abnormality data for better understanding (exploitation) and the identification of infrequent, unlabeled anomalies (exploration). During analysis, we observed that the proposed model achieves significant results in the context of average and greedy catching of anomalies in the presence of comparative models.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3