High-Resolution Remote Sensing Image Segmentation Algorithm Based on Improved Feature Extraction and Hybrid Attention Mechanism

Author:

Huang Min1ORCID,Dai Wenhui1ORCID,Yan Weihao1,Wang Jingyang12ORCID

Affiliation:

1. Hebei University of Science and Technology, Shijiazhuang 050018, China

2. Hebei Technology Innovation Center of Intelligent IoT, Shijiazhuang 050018, China

Abstract

Segmentation of high-resolution remote sensing images is one of the hottest topics in deep learning. Compared to ordinary images, high-resolution remote sensing images possess characteristics such as higher intra-class diversity and lower inter-class separability. Additionally, the objects in these images are complex and have smaller sizes. Aiming at the classical segmentation network in remote sensing images, there are some problems, such as inaccurate edge object segmentation, inconsistent segmentation of different types of objects, low detection accuracy, and a high false detection rate. This paper proposes a new hybrid attention model (S-CA), a new coordinate efficient channel attention module (C-ECA), and a new small-target feature extraction network (S-FE). The S-CA model enhances important spatial and channel features in shallow layers, allowing for more detailed feature extraction. The C-ECA model utilizes convolutional layers to capture complex dependencies between variations, thereby better capturing feature information at each position and reducing redundancy in feature channels. The S-FE network can capture the local feature information of different targets more effectively. It enhances the recognition and classification capabilities of various targets and improves the detection rate of small targets. The algorithm is used for segmentation in high-resolution remote sensing images. Experiments were conducted on the public dataset GID-15 based on Gaofen-2 satellite remote sensing images. The experimental results demonstrate that the improved DeepLabV3+ segmentation algorithm for remote sensing images achieved a mean intersection over union (mIoU), mean pixel accuracy (mPA), and mean precision (mP) of 91.6%, 96.1%, and 95.5%, respectively. The improved algorithm is more effective than current mainstream segmentation networks.

Funder

Foundation of Hebei Technology Innovation Center of Intelligent IoT

Defense Industrial Technology Development Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3