Transfer and CNN-Based De-Authentication (Disassociation) DoS Attack Detection in IoT Wi-Fi Networks

Author:

Gebresilassie Samson Kahsay1ORCID,Rafferty Joseph1ORCID,Chen Liming1ORCID,Cui Zhan2,Abu-Tair Mamun1ORCID

Affiliation:

1. British Telecom Ireland Innovation Centre, School of Computing, Ulster University, Belfast BT15 1ED, UK

2. British Telecom, Adastral Park, Ipswitch IP5 3RE, UK

Abstract

The Internet of Things (IoT) is a network of billions of interconnected devices embedded with sensors, software, and communication technologies. Wi-Fi is one of the main wireless communication technologies essential for establishing connections and facilitating communication in IoT environments. However, IoT networks are facing major security challenges due to various vulnerabilities, including de-authentication and disassociation DoS attacks that exploit IoT Wi-Fi network vulnerabilities. Traditional intrusion detection systems (IDSs) improved their cyberattack detection capabilities by adapting machine learning approaches, especially deep learning (DL). However, DL-based IDSs still need improvements in their accuracy, efficiency, and scalability to properly address the security challenges including de-authentication and disassociation DoS attacks tailored to suit IoT environments. The main purpose of this work was to overcome these limitations by designing a transfer learning (TL) and convolutional neural network (CNN)-based IDS for de-authentication and disassociation DoS attack detection with better overall accuracy compared to various current solutions. The distinctive contributions include a novel data pre-processing, and de-authentication/disassociation attack detection model accompanied by effective real-time data collection and parsing, analysis, and visualization to generate our own dataset, namely, the Wi-Fi Association_Disassociation Dataset. To that end, a complete experimental setup and extensive research were carried out with performance evaluation through multiple metrics and the results reveal that the suggested model is more efficient and exhibits improved performance with an overall accuracy of 99.360% and a low false negative rate of 0.002. The findings from the intensive training and evaluation of the proposed model, and comparative analysis with existing models, show that this work allows improved early detection and prevention of de-authentication and disassociation attacks, resulting in an overall improved network security posture for all Wi-Fi-enabled real-world IoT infrastructures.

Funder

BT Ireland Innovation Centre

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference54 articles.

1. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications (Standard No. IEEE 802.11-1997). Available online: https://standards.ieee.org.

2. IEEE Standard for Telecommunications and Information Exchange between Systems—LAN/MAN Specific Requirements—Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5 GHz Band (Standard No. IEEE 802.11a-1999). Available online: https://standards.ieee.org.

3. IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band (Standard No. 802.11g-2003). Available online: https://standards.ieee.org.

4. IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC)and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Higher Throughput (Standard No. 802.11n-2009). Available online: https://standards.ieee.org.

5. IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems–Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment 4: Enhancements for Very High Throughput for Operation in Bands below 6 GHz (Standard No. 802.11ac-2013). Available online: https://standards.ieee.org.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Identity Management Systems: The State-of-the-Art, Challenges and a Novel Architecture;Lecture Notes on Data Engineering and Communications Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3