A Novel Compact Gysel Power Divider with Bandpass Filtering Responses

Author:

Wu Zeyu1ORCID,Chen Zihao12ORCID,Wang Kaixu12ORCID

Affiliation:

1. School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

2. The Guangdong Provincial Key Laboratory of Aerospace Communication and Networking Technology, Shenzhen 518055, China

Abstract

This study presents a novel compact design of the Gysel topology and a filtering power divider (FPD) that utilizes a coupling structure. The proposed design replaces the traditional four-quarter wavelength transmission lines of the Gysel power divider with transmission lines and lumped components, resulting in a significantly reduced circuit size. Furthermore, the introduction of this coupling structure ensures the integration of the filtering and power division functions. Two transmission zeros are created near the passband to enhance the frequency selectivity of the responses. Theoretical analysis is carried out, and closed-form equations are derived based on the even–odd-mode method. To validate the theory, a three-port equal Gysel FPD operating at 2 GHz was designed and fabricated. The simulated and measured results demonstrate that this FPD has good power splitting and filtering capability with the size of 0.15 λg × 0.25 λg (λg is the medium wavelength of the central frequency), which is a significant reduction compared to the existing Gysel FPDs. The simulated and measured results are presented to verify the theoretical derivation, demonstrating good features, such as a return loss greater than 15 dB, isolation greater than 15 dB, and an insertion loss of about 4.02 dB (3 + 1.02 dB) in the passband.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shenzhen Science and Technology Program

Shenzhen Basic Research Program

Guangdong Provincial Key Laboratory of Millimeter-Wave and Terahertz

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ACOA-optimized microstrip gysel power divider with semi-radial-shaped resonators for broadband applications;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-06-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3