D2StarGAN: A Near-Far End Noise Adaptive StarGAN for Speech Intelligibility Enhancement

Author:

Li Dengshi1,Zhu Chenyi1ORCID,Zhao Lanxin1

Affiliation:

1. School of Artificial Intelligence, Jianghan University, Wuhan 430050, China

Abstract

When using mobile communication, the voice output from the device is already relatively clear, but in a noisy environment, it is difficult for the listener to obtain the information expressed by the speaker with clarity. Consequently, speech intelligibility enhancement technology has emerged to help alleviate this problem. Speech intelligibility enhancement (IENH) is a technique that enhances speech intelligibility during the reception phase. Previous research has focused on IENH through normal versus different levels of Lombardic speech conversion, inspired by a well-known acoustic mechanism called the Lombard effect. However, these methods often lead to speech distortion and impair the overall speech quality. To address the speech quality degradation problem, we propose an improved (StarGAN)-based IENH framework by combining StarGAN networks with the dual discriminator idea to construct the conversion framework. This approach offers two main advantages: (1) Addition of a speech metric discriminator on top of StarGAN to optimize multiple intelligibility and quality-related metrics simultaneously; (2) a framework that is adaptive to different distal and proximal noise levels with different noise types. Experimental results from objective experiments and subjective preference tests show that our approach outperforms the baseline approach, and these enable IENH to be more widely used.

Funder

National Natural Science Foundation of China

Application Foundation Frontier Special Project of Wuhan Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3