Improved LSTM Neural Network-Assisted Combined Vehicle-Mounted GNSS/SINS Navigation and Positioning Algorithm

Author:

Song Lijun1ORCID,Xu Peiyu1,He Xing1,Li Yunlong1,Hou Jiajie1,Feng Haoyu1

Affiliation:

1. School of Information and Control Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China

Abstract

Aiming at the problem of the combined navigation system of on-board GNSS (global navigation satellite system)/SINS (strapdown inertial navigation system), the accuracy of the combined navigation system decreases due to the dispersion of the SINS over time and under the condition of No GNSS signals. An improved LSTM (long short-term memory) neural network in No GNSS signal conditions is proposed to assist the combination of navigation data and the positioning algorithm. When the GNSS signal is normal input, the current on-board combination of the navigation module’s output sensor data information is used for training to improve the LSTM algorithm and to establish the incremental output of the GNSS position of the mapping of the different weights. In No GNSS signal conditions, using the improved LSTM algorithm can improve the combination of navigation and positioning algorithms. Under No GNSS signal conditions, the improved LSTM training model is used to predict the dynamics of SINS information component data. Under No GNSS signal conditions, the combined navigation filtering design is completed, and the error correction of SINS navigation and positioning information is carried out to obtain a more accurate combination of navigation and positioning system accuracy. It can be seen through the actual test experiment using a sports car in the two trajectories under the conditions of No GNSS signals that the proposed algorithm can be compared with the LSTM algorithm. In testing road sections, the proposed algorithm, when compared with the LSTM algorithm to obtain the northward position that the mean square errors were improved by 55.63% and 76.64%, and the eastward position mean square errors were improved by 43.42% and 54.67%. In a straight-line trajectory, improving the effect’s navigation and positioning accuracy and reliability is significant.

Funder

Equipment Major Basic Research Project of the Equipment Development Department of the Central Military Commission of China

Key Laboratory of National Defence Science and Technology Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference22 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context Awareness Assisted Integration System for Land Vehicles;Electronics;2024-05-23

2. A tightly coupled GNSS RTK/IMU integration with GA-BP neural network for challenging urban navigation;Measurement Science and Technology;2024-05-17

3. A Robust Framework for Epileptic Seizure Diagnosis: Utilizing GRU-CNN Architectures in EEG Signal Analysis;2024 20th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP);2024-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3