Affiliation:
1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China
Abstract
Currently, X-ray inspection systems may produce false detections due to factors such as the varying sizes of contraband images, complex backgrounds, and blurred edges. To address this issue, we propose the YOLO-CID method for contraband image detection. Firstly, we designed the MP-OD module in the backbone network to enhance the model’s ability to extract key information from complex background images. Secondly, at the neck of the network, we designed a simplified version of BiFPN to add cross-scale connection lines in the feature fusion structure, to preserve deeper semantic information and enhance the network’s ability to represent objects in low-contrast or occlusion situations. Finally, we added a new object detection layer to improve the model’s accuracy in detecting small objects in dense environments. Experimental results on the PIDray public dataset show that the average accuracy rate of the YOLO-CID algorithm is 82.7% and the recall rate is 81.2%, which are 4.9% and 3.2% higher than the YOLOv7 algorithm, respectively. At the same time, the mAP on the CLCXray dataset reached 80.2%. Additionally, it can achieve a real-time detection speed of 40 frames per second and 43 frames per second in real scenes. These results demonstrate the effectiveness of the YOLO-CID algorithm in X-ray contraband detection.
Funder
National Natural Science Foundation of China
Science and Technology Research Project of the Education Department of Hubei Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Illicit object detection in X-ray images using Vision Transformers;2024 5th International Conference in Electronic Engineering, Information Technology & Education (EEITE);2024-05-29
2. YOLOv8-AS: Masked Face Detection and Tracking Based on YOLOv8 with Attention Mechanism Model;Communications in Computer and Information Science;2024