Migratory Perception in Edge-Assisted Internet of Vehicles

Author:

Cai Chao1,Chen Bin1,Qiu Jiahui1,Xu Yanan1,Li Mengfei2ORCID,Yang Yujia2

Affiliation:

1. China United Network Communications Co., Ltd., Intelligent Network Innovation Center, Beijing 100048, China

2. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Autonomous driving technology heavily relies on the accurate perception of traffic environments, mainly through roadside cameras and LiDARs. Although several popular and robust 2D and 3D object detection methods exist, including R-CNN, YOLO, SSD, PointPillar, and VoxelNet, the perception range and accuracy of an individual vehicle can be limited by blocking from other vehicles or buildings. A solution is to harness roadside perception infrastructures for vehicle–infrastructure cooperative perception, using edge computing for real-time intermediate features extraction and V2X networks for transmitting these features to vehicles. This emerging migratory perception paradigm requires deploying exclusive cooperative perception services on edge servers and involves the migration of perception services to reduce response time. In such a setup, competition among multiple cooperative perception services exists due to limited edge resources. This study proposes a multi-agent reinforcement learning (MADRL)-based service scheduling method for migratory perception in vehicle–infrastructure cooperative perception, utilizing a discrete time-varying graph to model the relationship between service nodes and edge server nodes. This MADRL-based approach can efficiently address the challenges of service placement and migration in resource-limited environments, minimize latency, and maximize resource utilization for migratory perception services on edge servers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3