Application of Vibration Data Mining and Deep Neural Networks in Bridge Damage Identification

Author:

Hou Yi1ORCID,Qian Songrong2ORCID,Li Xuemei1,Wei Shaodong1,Zheng Xin1,Zhou Shiyun1

Affiliation:

1. School of Mechanical Engineering, Guizhou University, Guiyang 550025, China

2. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China

Abstract

The aim of this paper is to mine the information contained in the bridge health monitoring data as well as to improve the shortcomings of traditional identification methods. In this paper, a bridge damage identification method based on the combination of data mining and deep neural networks is introduced. Firstly, a noise reduction method based on parameter optimisation of wavelet threshold decomposition is proposed, which further removes the noise signal by introducing two adjustment parameters in the threshold function to adapt to different wavelet decomposition layers. Furthermore, the Fast Fourier Transform is used to analyse the feature pattern of the original signal in the frequency domain, and the modal frequency features that exhibit the difference in damage categories are extracted from the spectrogram through sliding windows. Finally, a large number of irrelevant variables with small weight contributions are discarded by principal component analysis, and only the sensitive features with the most informative categories are retained as the input to the deep neural networks. The experimental results show that the new metrics after the feature engineering process improve the ability of damage identification and have stronger robustness, while our damage identification scheme achieves a good balance between the model computation and recognition accuracy. Furthermore, the recognition accuracy of the deep neural networks reaches over 93% with only three feature dimensions retained.

Funder

National Key Research and Development Program of China

Guizhou international science and technology cooperation base project: Guizhou optoelectronic information and intelligent application International Joint Research Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3