Magnetic Flux Leakage Testing Method for Pipelines with Stress Corrosion Defects Based on Improved Kernel Extreme Learning Machine

Author:

Li Yingqi1,Sun Chao1ORCID,Liu Yuechan1

Affiliation:

1. School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China

Abstract

This study aims to study the safety of oil and gas pipelines under stress corrosion conditions and grasp the corrosion damage situation timely and accurately. Consequently, a non-destructive testing method combining magnetic flux leakage testing technology and a kernel function extreme learning machine improved by genetic algorithm (GA-KELM) is proposed. Firstly, the variation of the corrosion defect dimension and profile with time is obtained by numerical simulation. At the same time, the distribution of the magnetic flux leakage signal under different defect conditions is analyzed and studied. Finally, feature selection is carried out on the magnetic flux leakage signal distribution curve, and GA-KELM is used to predict the depth and length of corrosion defects so as to realize the non-destructive testing of the pipeline defects. The results show that different geometric features result in different magnetic flux leakage signal distributions. There is a corresponding relationship between the defect dimension and extreme value, area, and peak width of the magnetic flux leakage signal distribution curve. The GA-KELM prediction model can effectively predict the depth and length of corrosion defects, and the prediction accuracy is better than the traditional extreme learning machine prediction model.

Funder

the National Natural Science Foundation of China

University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province

Nature Scientific Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3