Affiliation:
1. School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China
Abstract
This study aims to study the safety of oil and gas pipelines under stress corrosion conditions and grasp the corrosion damage situation timely and accurately. Consequently, a non-destructive testing method combining magnetic flux leakage testing technology and a kernel function extreme learning machine improved by genetic algorithm (GA-KELM) is proposed. Firstly, the variation of the corrosion defect dimension and profile with time is obtained by numerical simulation. At the same time, the distribution of the magnetic flux leakage signal under different defect conditions is analyzed and studied. Finally, feature selection is carried out on the magnetic flux leakage signal distribution curve, and GA-KELM is used to predict the depth and length of corrosion defects so as to realize the non-destructive testing of the pipeline defects. The results show that different geometric features result in different magnetic flux leakage signal distributions. There is a corresponding relationship between the defect dimension and extreme value, area, and peak width of the magnetic flux leakage signal distribution curve. The GA-KELM prediction model can effectively predict the depth and length of corrosion defects, and the prediction accuracy is better than the traditional extreme learning machine prediction model.
Funder
the National Natural Science Foundation of China
University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province
Nature Scientific Foundation of Heilongjiang Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献