A Multi-Robot-Based Architecture and a Trust Model for Intelligent Fault Management and Control Systems

Author:

Gharbi Atef12ORCID,Altowaijri Saleh M.1ORCID

Affiliation:

1. Department of Information Systems, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia

2. LISI Laboratory, National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Carthage 1054, Tunisia

Abstract

One of the most important challenges in robotics is the development of a Multi-Robot-based control system in which the robot can make intelligent decisions in a changing environment. This paper proposes a robot-based control approach for dynamically managing robots in such a widely distributed production system. A Multi-Robot-based control system architecture is presented, and its main features are described. Such architecture facilitates the reconfiguration (either self-reconfiguration ensured by the robot itself or distributed reconfiguration executed by the Multi-Robot-based system). The distributed reconfiguration is facilitated through building a trust model that is based on learning from past interactions between intelligent robots. The Multi-Robot-based control system architecture also addresses other specific requirements for production systems, including fault flexibility. Any out-of-control fault occurring in a production system results in the loss of production time, resources, and money. In these cases, robot trust is critical for successful job completion, especially when the work can only be accomplished by sharing knowledge and resources among robots. This work introduces research on the construction of trust estimation models that experimentally calculate and evaluate the trustworthiness of robots in a Multi-Robot system where the robot can choose to cooperate and collaborate exclusively with other trustworthy robots. We compare our proposed trust model with other models described in the literature in terms of performance based on four criteria, which are time steps analysis, RMSD evaluation, interaction analysis, and variation of total feedback. The contribution of the paper can be summarized as follows: (i) the Multi-Robot-based Control Architecture; (ii) how the control robot handles faults; and (iii) the trust model.

Funder

Northern Border University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3