Affiliation:
1. Department of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China
2. School of Statistics and Data Science, Nanjing Audit University, Nanjing 211815, China
Abstract
In the process of inspecting the self-exploding defects of power line insulators, traditional algorithms suffer from various issues such as long detection time, insufficient accuracy, and difficulties in effective detection under complex environments. To address these problems, we introduce an advanced one-stage object detection algorithm called YOLOv5s, which offers fast training and excellent detection performance. In this paper, we applied the YOLOv5s algorithm to improve the detection precision and classification accuracy of insulator self-explosions. To further enhance the YOLOv5s algorithm, we introduced a BiFPN (Bidirectional Feature Pyramid Network) module for feature fusion. This module improved the feature fusion process by learning the importance weights of different input features, considering their contributions. To tackle the challenge of detecting small objects in the self-exploding insulator dataset, we incorporated an SPD (spatial-to-depth convolution) module that focuses on capturing features in small regions and utilizes one-step convolution layers to avoid losing fine-grained information. To address the issue of high similarity between self-exploding insulator regions and intact insulator regions, we introduced an attention mechanism that concentrates attention on the defective insulator regions to gather more information about insulator defects. Experimental results validate that all three improvement methods significantly enhance detection precision. The final model achieves improvements of 2.0% in precision, 0.9% in recall, and 1.5% in average detection accuracy. Through target detection of the test dataset, insulators with self-explosion cases can be effectively detected.
Funder
Jinling Institute of Technology High-level Talent Research Start-up Project
Key R&D Plan Project of Jiangsu Province
Jinling Institute of Technology Science and Education Integration Project
Jiangsu Province College Student Innovation Training Program Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献