The Generalization of Non-Negative Matrix Factorization Based on Algorithmic Stability

Author:

Sun Haichao1,Yang Jie2

Affiliation:

1. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Physics and Electronic Science, Zunyi Normal University, Zunyi 563002, China

Abstract

The Non-negative Matrix Factorization (NMF) is a popular technique for intelligent systems, which can be widely used to decompose a nonnegative matrix into two factor matrices: a basis matrix and a coefficient one, respectively. The main objective of NMF is to ensure that the operation results of the two matrices are as close to the original matrix as possible. Meanwhile, the stability and generalization ability of the algorithm should be ensured. Therefore, the generalization performance of NMF algorithms is analyzed from the perspective of algorithm stability and the generalization error bounds are given, which is named AS-NMF. Firstly, a general NMF prediction algorithm is proposed, which can predict the labels for new samples, and then the corresponding loss function is defined further. Secondly, the stability of the NMF algorithm is defined according to the loss function, and two generalization error bounds can be obtained by employing uniform stability in the case where U is fixed and it is not fixed under the multiplicative update rule. The bounds numerically show that its stability parameter depends on the upper bound on the module length of the input data, dimension of hidden matrix and Frobenius norm of the basis matrix. Finally, a general and stable framework is established, which can analyze and measure generalization error bounds for the NMF algorithm. The experimental results demonstrate the advantages of new methods on three widely used benchmark datasets, which indicate that our AS-NMF can not only achieve efficient performance, but also outperform the state-of-the-art of recommending tasks in terms of model stability.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Chongqing Natural Science Foundation

Key Cooperation Project of Chongqing Municipal Education Commission

Doctoral Innovation Talent Program of Chongqing University of Posts and Telecommunications

Science and Technology Research Program of Chongqing Education Commission of China

Chongqing Postgraduate Research Innovation Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3