Siamese PointNet: 3D Head Pose Estimation with Local Feature Descriptor

Author:

Wang Qi1,Lei Hang1,Qian Weizhong1

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Head pose estimation is an important part of the field of face analysis technology. It can be applied to driver attention monitoring, passenger monitoring, effective information screening, etc. However, illumination changes and partial occlusion interfere with the task, and due to the non-stationary characteristic of the head pose change process, normal regression networks are unable to achieve very accurate results on large-scale synthetic training data. To address the above problems, a Siamese network based on 3D point clouds was proposed, which adopts a share weight network with similar pose samples to constrain the regression process of the pose’s angles; meanwhile, a local feature descriptor was introduced to describe the local geometric features of the objects. In order to verify the performance of our method, we conducted experiments on two public datasets: the Biwi Kinect Head Pose dataset and Pandora. The results show that compared with the latest methods, our standard deviation was reduced by 0.4, and the mean error was reduced by 0.1; meanwhile, our network also maintained a good real-time performance.

Funder

The National Natural Science Foundation of China.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3