Hybrid Classifiers for Spatio-Temporal Abnormal Behavior Detection, Tracking, and Recognition in Massive Hajj Crowds

Author:

Alafif Tarik1ORCID,Hadi Anas2,Allahyani Manal2,Alzahrani Bander2ORCID,Alhothali Areej2ORCID,Alotaibi Reem2ORCID,Barnawi Ahmed2ORCID

Affiliation:

1. Department of Computer Science, Jamoum University College, Umm Al-Qura University, Makkah 25375, Saudi Arabia

2. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Individual abnormal behaviors vary depending on crowd sizes, contexts, and scenes. Challenges such as partial occlusions, blurring, a large number of abnormal behaviors, and camera viewing occur in large-scale crowds when detecting, tracking, and recognizing individuals with abnormalities. In this paper, our contribution is two-fold. First, we introduce an annotated and labeled large-scale crowd abnormal behavior Hajj dataset, HAJJv2. Second, we propose two methods of hybrid convolutional neural networks (CNNs) and random forests (RFs) to detect and recognize spatio-temporal abnormal behaviors in small and large-scale crowd videos. In small-scale crowd videos, a ResNet-50 pre-trained CNN model is fine-tuned to verify whether every frame is normal or abnormal in the spatial domain. If anomalous behaviors are observed, a motion-based individual detection method based on the magnitudes and orientations of Horn–Schunck optical flow is proposed to locate and track individuals with abnormal behaviors. A Kalman filter is employed in large-scale crowd videos to predict and track the detected individuals in the subsequent frames. Then, means and variances as statistical features are computed and fed to the RF classifier to classify individuals with abnormal behaviors in the temporal domain. In large-scale crowds, we fine-tune the ResNet-50 model using a YOLOv2 object detection technique to detect individuals with abnormal behaviors in the spatial domain. The proposed method achieves 99.76% and 93.71% of average area under the curves (AUCs) on two public benchmark small-scale crowd datasets, UMN and UCSD, respectively, while the large-scale crowd method achieves 76.08% average AUC using the HAJJv2 dataset. Our method outperforms state-of-the-art methods using the small-scale crowd datasets with a margin of 1.66%, 6.06%, and 2.85% on UMN, UCSD Ped1, and UCSD Ped2, respectively. It also produces an acceptable result in large-scale crowds.

Funder

Deputyship for Research and Innovation, Ministry of Education, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3