A Big Data Platform for International Academic Conferences Based on Microservice Framework

Author:

Yang Biao1,Liu He1,Xiong Xuanrui1,Zhu Shuaiqi2,Tolba Amr3ORCID,Zhang Xingguo4ORCID

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. School of Software, Dalian University of Technology, Dalian 116024, China

3. Department of Computer Science, Community College, King Saud University, Riyadh 11437, Saudi Arabia

4. Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Nakacho Koganei, Tokyo 184-8588, Japan

Abstract

In the era of the information explosion, big data are always around us. Academic big data are defined as a large amount of data generated in the life cycle of all academic activities, which usually contains a large amount of academic information. Academic conferences can effectively promote academic exchanges among scholars. In recent years, academic conferences in various fields have been held around the world. However, with the increase in the number of academic conferences, the quality of conferences and the efficiency of hosting and participating in conferences are uneven. In today’s fast-paced life, high-quality and efficient academic conferences have become the first choice of scholars. In this paper, a conference recommendation method based on a big data analysis of users’ interests and preferences is proposed to help users choose high-quality academic conferences and to help organizers reduce conference costs and improve the conference operation efficiency. The method first divides the research fields of user-related academic conferences into three categories: the fields that users are interested in, the fields that users attend, and the research fields that users follow up. Then, the weights of these three categories are set, and the importance of each category recommendation related to the user is calculated. Finally, the conference recommendation index is calculated and several conferences with a high recommendation value are recommended to users. The experimental results show that the proposed conference recommendation method provides a convenient and fast service to conference participants and conference organizers. The developed big data platform can significantly improve the operation and participation efficiency of academic conferences, reduce the costs, and give full play to the role and value of academic conferences.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3