DV-Hop Location Algorithm Based on RSSI Correction

Author:

Zhang Wanli12,Yang Xiaoying13

Affiliation:

1. School of Information Engineering, Suzhou University, Suzhou 234000, China

2. Anhui Provincial Key Laboratory of Intelligent Building and Building Energy Conservation, Anhui Jianzhu University, Hefei 230022, China

3. School of Electronic Information Engineering, Anhui University, Hefei 230039, China

Abstract

To increase the positioning accuracy of Distance Vector-Hop (DV-Hop) algorithm in non-uniform networks, an improved DV-Hop algorithm based on RSSI correction is proposed. The new algorithm first quantizes hops between two nodes by the ratio of the RSSI value between two nodes and the benchmark RSSI value, divides the hops continuously, calculates the average hop distance according to the Minimum Mean Square Error (MMSE) criterion of the best index based on the quantized hops, and then adds hop distance matching factor to the fitness function of each anchor node into the calculation of the hop distance fitness function to weight the fitness function. The change index value is introduced to obtain more accurate hop distance value, and then the estimation error of unknown node (UN) coordinate is modified by using the distance relationship between the UN and the nearest beacon node (BN), and the modified coordination position is further modified by using the triangle centroid to improve the accuracy of node positioning in the irregular network. The experimental results show that compared with the original DV-Hop, improved DV-Hop1, improved DV-Hop2 and improved DV-Hop3, the localization error of the improved algorithm in this paper is reduced by 58%, 45%, 34%, and 29%, respectively, on average, in the two network environments. Without increasing the hardware cost and energy consumption, the improved algorithm has excellent localization performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3