A Next POI Recommendation Based on Graph Convolutional Network by Adaptive Time Patterns

Author:

Wu Jiang1,Jiang Shaojie1ORCID,Shi Lei2ORCID

Affiliation:

1. Informatization Construction and Management Office, Sichuan University, Chengdu 610041, China

2. State Key Laboratory of Media Convergence and Communication, Communication University of China, Beijing 100024, China

Abstract

Users’ activities in location-based social networks (LBSNs) can be naturally transformed into graph structural data, and more advanced graph representation learning techniques can be adopted for analyzing user preferences, which benefits a variety of real-world applications. This paper focuses on the next point-of-interest (POI) recommendation task in LBSNs. We argue that existing graph-based POI recommendation methods only consider user preferences from several individual contextual factors, ignoring the influence of interactions between different contextual information. This practice leads to the suboptimal learning of user preferences. To address this problem, we propose a novel method called hierarchical attention-based graph convolutional network (HAGCN) for the next POI recommendation, a technique which leverages graph convolutional networks to extract the representations of POIs from predefined graphs via different time patterns and develops a hierarchical attention mechanism to adaptively learn user preferences from the interactions between different contextual data. Moreover, HAGCN uses a dynamic preference estimation to precisely learn user preferences. We conduct extensive experiments on real-world datasets to evaluate the performance of HAGCN against representative baseline models in the field of next POI recommendation. The experimental results demonstrate the superiority of our proposed method on the next POI recommendation task.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Humanities and Social Science Research Project of Hebei Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3