Statistical Study on the Time Characteristics of the Transient EMD Excitation Current from the Pantograph–Catenary Arcing Discharge

Author:

Jin Mengzhe1,Wang Shaoqian1,Liu Shanghe12,Fang Qingyuan1,Liu Weidong1

Affiliation:

1. Hebei Key Laboratory for Electromagnetic Environmental Effects and Information Processing, Shijiazhuang Tiedao University, Shijiazhuang 050003, China

2. National Key Laboratory on Electromagnetic Environment Effects, Army Engineering University of PLA, Shijiazhuang 050043, China

Abstract

Electromagnetic disturbances (EMDs) resulting from arcing discharge between the pantograph and catenary pose a serious threat to the electromagnetic safety of electrified trains. The time characteristic of EMD excitation current has a significant impact on the generation mechanism and characteristics of electromagnetic emission from pantograph–catenary discharge, but there have been few studies on the topic. In this paper, a large sample of time-domain waveform parameters were collected through laboratory measurements considering the high randomness nature of the arcing discharge. The reference distributions of the waveform parameters were selected using the Kolmogorov–Smirnov test, and the probability density function parameters that vary with applied voltages and discharge gap spacings were examined. Then, a stochastic model for the derivation of the discharge current waveform was proposed based on statistical results using a modified double exponential function whose parameters can be derived from physical properties. Waveforms of the excitation currents representing different EMD severities were generated by adjusting the quantiles of the fitting distributions. The validity of the stochastic model was demonstrated by comparing the measured and simulated waveforms for both single pulses and pulse trains. The proposed method and generated waveforms can help recreate the electromagnetic environment of pantograph–catenary arcing.

Funder

National Natural Science Foundation of China

China Railway Signal & Communication Corp.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3