Design and Implementation of Two Immersive Audio and Video Communication Systems Based on Virtual Reality

Author:

Zhang Hanqi1,Wang Jing1ORCID,Li Zhuoran2,Li Jingxin3

Affiliation:

1. School of Information and Electronics, Beijing Institute of Technology, Beijing 100811, China

2. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100045, China

3. China Electronics Standardization Institute, Beijing 101102, China

Abstract

Due to the impact of the COVID-19 pandemic in recent years, remote communication has become increasingly common, which has also spawned many online solutions. Compared with an in-person scenario, the feeling of immersion and participation is lacking in these solutions, and the effect is thus not ideal. In this study, we focus on two typical virtual reality (VR) application scenarios with immersive audio and video experience: VR conferencing and panoramic live broadcast. We begin by introducing the core principles of traditional video conferencing, followed by the existing research results of VR conferencing along with the similarities, differences, pros, and cons of each solution. Then, we outline our view about what elements a virtual conferencing room should have. After that, a simple implementation scheme for VR conferencing is provided. Regarding panoramic video, we introduce the steps to produce and transmit a panoramic live broadcast and analyze several current mainstream encoding optimization schemes. By comparing traditional video streams, the various development bottlenecks of panoramic live broadcast are identified and summarized. A simple implementation of a panoramic live broadcast is presented in this paper. To conclude, the main points are illustrated along with the possible future directions of the two systems. The simple implementation of two immersive systems provides a research and application reference for VR audio and video transmission, which can guide subsequent relevant research studies.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3