Fuzzy Rough Nearest Neighbour Methods for Aspect-Based Sentiment Analysis

Author:

Kaminska Olha1ORCID,Cornelis Chris1ORCID,Hoste Veronique2ORCID

Affiliation:

1. Computational Web Intelligence, Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium

2. LT3 Language and Translation Technology Team, Ghent University, 9000 Ghent, Belgium

Abstract

Fine-grained sentiment analysis, known as Aspect-Based Sentiment Analysis (ABSA), establishes the polarity of a section of text concerning a particular aspect. Aspect, sentiment, and emotion categorisation are the three steps that make up the configuration of ABSA, which we looked into for the dataset of English reviews. In this work, due to the fuzzy nature of textual data, we investigated machine learning methods based on fuzzy rough sets, which we believe are more interpretable than complex state-of-the-art models. The novelty of this paper is the use of a pipeline that incorporates all three mentioned steps and applies Fuzzy-Rough Nearest Neighbour classification techniques with their extension based on ordered weighted average operators (FRNN-OWA), combined with text embeddings based on transformers. After some improvements in the pipeline’s stages, such as using two separate models for emotion detection, we obtain the correct results for the majority of test instances (up to 81.4%) for all three classification tasks. We consider three different options for the pipeline. In two of them, all three classification tasks are performed consecutively, reducing data at each step to retain only correct predictions, while the third option performs each step independently. This solution allows us to examine the prediction results after each step and spot certain patterns. We used it for an error analysis that enables us, for each test instance, to identify the neighbouring training samples and demonstrate that our methods can extract useful patterns from the data. Finally, we compare our results with another paper that performed the same ABSA classification for the Dutch version of the dataset and conclude that our results are in line with theirs or even slightly better.

Funder

Research Foundation - Flanders

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3