Deep-Learning-Based Sequence Causal Long-Term Recurrent Convolutional Network for Data Fusion Using Video Data

Author:

Jeon DaeHyeon1,Kim Min-Suk1ORCID

Affiliation:

1. Department of Human Intelligence and Robot Engineering, Sangmyung University, Cheonan 03016, Republic of Korea

Abstract

The purpose of AI-Based schemes in intelligent systems is to advance and optimize system performance. Most intelligent systems adopt sequential data types derived from such systems. Realtime video data, for example, are continuously updated as a sequence to make necessary predictions for efficient system performance. The majority of deep-learning-based network architectures such as long short-term memory (LSTM), data fusion, two streams, and temporal convolutional network (TCN) for sequence data fusion are generally used to enhance robust system efficiency. In this paper, we propose a deep-learning-based neural network architecture for non-fix data that uses both a causal convolutional neural network (CNN) and a long-term recurrent convolutional network (LRCN). Causal CNNs and LRCNs use incorporated convolutional layers for feature extraction, so both architectures are capable of processing sequential data such as time series or video data that can be used in a variety of applications. Both architectures also have extracted features from the input sequence data to reduce the dimensionality of the data and capture the important information, and learn hierarchical representations for effective sequence processing tasks. We have also adopted a concept of series compact convolutional recurrent neural network (SCCRNN), which is a type of neural network architecture designed for processing sequential data combined by both convolutional and recurrent layers compactly, reducing the number of parameters and memory usage to maintain high accuracy. The architecture is challenge-able and suitable for continuously incoming sequence video data, and doing so allowed us to bring advantages to both LSTM-based networks and CNNbased networks. To verify this method, we evaluated it through a sequence learning model with network parameters and memory that are required in real environments based on the UCF-101 dataset, which is an action recognition data set of realistic action videos, collected from YouTube with 101 action categories. The results show that the proposed model in a sequence causal long-term recurrent convolutional network (SCLRCN) provides a performance improvement of at least 12% approximately or more to be compared with the existing models (LRCN and TCN).

Funder

Sangmyung University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3