Silver-Doped CsPbI2Br Perovskite Semiconductor Thin Films

Author:

Kebede Tamiru12,Abebe Mulualem1,Mani Dhakshnamoorthy1,Thankappan Aparna3,Thomas Sabu4,Kim Jung Yong56ORCID

Affiliation:

1. Faculty of Materials Science and Engineering, Jimma Institute of Technology, Jimma University, Jimma P.O. Box 378, Ethiopia

2. Department of Physics, College of Natural and Computational Science, Bonga University, Bonga P.O. Box 334, Ethiopia

3. Department of Physics, Baselius College, Kottayam 686001, India

4. School of Energy Materials, Mahatma Gandhi University, Kottayam 686560, India

5. Department of Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

6. Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia

Abstract

All-inorganic perovskite semiconductors have received significant interest for their potential stability over heat and humidity. However, the typical CsPbI3 displays phase instability despite its desirable bandgap of ~1.73 eV. Herein, we studied the mixed halide perovskite CsPbI2Br by varying the silver doping concentration. For this purpose, we examined its bandgap tunability as a function of the silver doping by using density functional theory. Then, we studied the effect of silver on the structural and optical properties of CsPbI2Br. Resultantly, we found that ‘silver doping’ allowed for partial bandgap tunability from 1.91 eV to 2.05 eV, increasing the photoluminescence (PL) lifetime from 0.990 ns to 1.187 ns, and, finally, contributing to the structural stability when examining the aging effect via X-ray diffraction. Then, through the analysis of the intermolecular interactions based on the solubility parameter, we explain the solvent engineering process in relation to the solvent trapping phenomena in CsPbI2Br thin films. However, silver doping may induce a defect morphology (e.g., a pinhole) during the formation of the thin films.

Funder

Jimma Institute of Technology

Bonga University in Ethiopia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3