Crowdsourced Security Reconstitution for Wireless Sensor Networks: Secrecy Amplification

Author:

Ostadal Radim,Matyas Vashek,Svenda PetrORCID,Nemec LukasORCID

Abstract

Research in the area of security for Wireless Sensor Networks over the past two decades has yielded many interesting findings. We focus on the topic of (re-)securing link keys between sensor nodes through so-called secrecy amplification (SA) protocols. Crowdsourcing is at the very heart of these SA protocols. Not only do SA protocols work wonders even for low-level constrained nodes with no tamper resistance, they exhibit astonishing performance in networks under significant attacker control. Our work shows that even when 50% of all network links are compromised, SA protocols can re-secure over 90% of the link keys through an intriguingly simple crowdsourcing mechanism. These protocols allow us to re-take control without any broadly coordinated cooperation, without knowledge of the compromised links, with only very limited knowledge of each particular network node and independently of decisions made by other nodes. Our article first outlines the principles of and presents existing approaches to SA, introducing most of the important related concepts, then presents novel conclusive results for a realistic attacker model parametrised by attacker behaviour and capabilities. We undertook this work using two very different simulators, and we present here the results of analyses and detailed comparisons that have not previously been available. Finally, we report the first real, non-simulated network test results for the most attractive SA protocol, our implementations of which are available as open-source code for two platforms: Arduino and TinyOS. This work demonstrates the practical usability (and the attractive performance) of SA, serving as a ripe technology enabler for (among others) networks with many potentially compromised low-level devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference21 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3