Characterizing Word Embeddings for Zero-Shot Sensor-Based Human Activity Recognition

Author:

Matsuki MoeORCID,Lago PaulaORCID,Inoue Sozo

Abstract

In this paper, we address Zero-shot learning for sensor activity recognition using word embeddings. The goal of Zero-shot learning is to estimate an unknown activity class (i.e., an activity that does not exist in a given training dataset) by learning to recognize components of activities expressed in semantic vectors. The existing zero-shot methods use mainly 2 kinds of representation as semantic vectors, attribute vector and embedding word vector. However, few zero-shot activity recognition methods based on embedding vector have been studied; especially for sensor-based activity recognition, no such studies exist, to the best of our knowledge. In this paper, we compare and thoroughly evaluate the Zero-shot method with different semantic vectors: (1) attribute vector, (2) embedding vector, and (3) expanded embedding vector and analyze their correlation to performance. Our results indicate that the performance of the three spaces is similar but the use of word embedding leads to a more efficient method, since this type of semantic vector can be generated automatically. Moreover, our suggested method achieved higher accuracy than attribute-vector methods, in cases when there exist similar information in both the given sensor data and in the semantic vector; the results of this study help select suitable classes and sensor data to build a training dataset.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TEZARNet: TEmporal Zero-Shot Activity Recognition Network;Communications in Computer and Information Science;2023-11-26

2. Unleashing the Power of Shared Label Structures for Human Activity Recognition;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

3. Navigating Alignment for Non-identical Client Class Sets: A Label Name-Anchored Federated Learning Framework;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

4. Reconnaissance d’activités de la vie quotidienne au moyen de capteurs domotiques et d’apprentissage profond : lorsque syntaxe, sémantique et contexte se rencontrent;Revue Ouverte d'Intelligence Artificielle;2023-05-30

5. Generalized Zero-Shot Activity Recognition with Embedding-Based Method;ACM Transactions on Sensor Networks;2023-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3