Role of Biosynthesized Silver Nanoparticles with Trigonella foenum-graecum Seeds in Wastewater Treatment

Author:

Awad Manal A.1ORCID,Virk Promy2ORCID,Hendi Awatif A.3,Ortashi Khalid Mustafa4,AlMasoud Najla5ORCID,Alomar Taghrid S.5ORCID

Affiliation:

1. King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Zoology, King Saud University, Riyadh 11451, Saudi Arabia

3. Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

4. Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia

5. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

As the human population continues to escalate, its requirement for clean water is also increasing. This has resulted in an increased dependency on wastewater effluent to maintain the base flow of urban streams, especially in water-stressed regions. The present study reports the synthesis of AgNPs with green credentials using an aqueous extract of Trigonella foenum-graecum seeds. The observance of surface plasmon resonance (SPR) with UV–Vis spectrophotometry confirmed the presence of spherical/oblong particles with a mean diameter of 43.8 nm and low polydispersity index (PDI) of 0.391 measured by transmission electron microscopy (TEM) and DLS (dynamic light scattering) technique, respectively. The elemental map of AgNPs was demonstrated with energy-dispersive spectroscopy (EDS) and the constituent functional groups were identified by the FTIR spectra, which were similar to the bulk seed extract with a slight shift in the pattern. The emission spectrum of nanoparticles was recorded for the excitation wavelength of 349 using fluorescence microscopy and the crystalline structure was assessed using X-ray diffraction. The potential wastewater remedial efficacy of the synthesized AgNPs was evaluated based on the water quality parameters (pH, EC, BOD, COD) of the sewage effluent collected from a local Sewage Treatment Plant (STP). Furthermore, the photo degradative efficacy was investigated using the degradation percentage of Crystal Violet (CV) dye, which was recorded as 94.5% after 20 min. In addition, the antimicrobial activity of the NPs versus bulk seed extract was assessed against two bacterial strains, Escheria coli and Staphylococcus aureus, using the disc diffusion method. The AgNPs showed a profound modulatory effect on the water quality parameters, coupled with marked antimicrobial and photodegradative activity. Thus, the biogenically synthesized AgNPs offer a prospective potential for use in wastewater remediation strategies.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3