Affiliation:
1. Innovation Centre for Environment and Resources, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China
2. Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
Abstract
The design of distillation columns significantly impacts the economy, energy consumption, and environment of chemical processes. However, optimizing the design of distillation columns is a very challenging problem. In order to develop an intelligent technique to obtain the best design solution, improve design efficiency, and minimize reliance on experience in the design process, a design methodology based on the GA-BP model is proposed in this paper. Firstly, a distillation column surrogate model is established using the back propagation neural network technique based on the training data from the rigorous simulation, which covers all possible changes in feed conditions, operating conditions, and design parameters. The essence of this step is to turn the distillation design process from model-driven to data-driven. Secondly, the model takes the minimum TAC as the objective function and performs the optimization search using a Genetic Algorithm to obtain the design solution with the minimum TAC, in which a life-cycle assessment (LCA) model is incorporated to evaluate the obtained optimized design solution from both economic and environmental aspects. Finally, the feasibility of the proposed method is verified with a propylene distillation column as an example. The results show that the method has advantages in convergence speed without sacrificing accuracy and can obtain an improved design solution with reduced cost and environmental impact. Compared with the original design using rigorous simulation, the TAC is reduced by 6.1% and carbon emission by 27.13 kgCO2/t.
Funder
Capacity Building Project of Some Local Colleges and Universities in Shanghai
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献