Intelligent Optimization Design of Distillation Columns Using Surrogate Models Based on GA-BP

Author:

Ye Lixiao1,Zhang Nan2ORCID,Li Guanghui1,Gu Dungang1,Lu Jiaqi1ORCID,Lou Yuhang1

Affiliation:

1. Innovation Centre for Environment and Resources, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China

2. Centre for Process Integration, Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK

Abstract

The design of distillation columns significantly impacts the economy, energy consumption, and environment of chemical processes. However, optimizing the design of distillation columns is a very challenging problem. In order to develop an intelligent technique to obtain the best design solution, improve design efficiency, and minimize reliance on experience in the design process, a design methodology based on the GA-BP model is proposed in this paper. Firstly, a distillation column surrogate model is established using the back propagation neural network technique based on the training data from the rigorous simulation, which covers all possible changes in feed conditions, operating conditions, and design parameters. The essence of this step is to turn the distillation design process from model-driven to data-driven. Secondly, the model takes the minimum TAC as the objective function and performs the optimization search using a Genetic Algorithm to obtain the design solution with the minimum TAC, in which a life-cycle assessment (LCA) model is incorporated to evaluate the obtained optimized design solution from both economic and environmental aspects. Finally, the feasibility of the proposed method is verified with a propylene distillation column as an example. The results show that the method has advantages in convergence speed without sacrificing accuracy and can obtain an improved design solution with reduced cost and environmental impact. Compared with the original design using rigorous simulation, the TAC is reduced by 6.1% and carbon emission by 27.13 kgCO2/t.

Funder

Capacity Building Project of Some Local Colleges and Universities in Shanghai

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applications in catalytic hydrogenation of carbon dioxide to methanol: A comprehensive review;International Journal of Hydrogen Energy;2024-04

2. An Integrated Multi-Unit and Multi-Objective Optimization Approach for Enhancing the Efficiency of Ethylene Distillation Process;2023 2nd International Conference on Advanced Sensing, Intelligent Manufacturing (ASIM);2023-12-22

3. Enhancing Techno Economic Efficiency of FTC Distillation Using Cloud-Based Stochastic Algorithm;International Journal of Cloud Applications and Computing;2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3