Study on Mechanism of MSWI Fly Ash Solidified by Multiple Solid Waste-Based Cementitious Material Using the Rietveld Method

Author:

Wang Xiaoli12,Fu Pingfeng1ORCID,Deng Wei1,Shi JinJin3,Xu Miao4

Affiliation:

1. School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. BGRIMM Technology Group, State Key Laboratory of Mineral Processing, Beijing 102628, China

3. Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China

4. Road Materials and Technology Engineering Research Center of Hebei Province, Cangzhou 061000, China

Abstract

A novel multiple solid waste-based cementitious material (MSWCM) was developed to immobilize municipal solid waste incineration (MSWI) fly ash. The compressive strength of MSWCM with different ratios of MSWI fly ash reached the standard requirements after curing for 28 days. X-ray powder diffraction (XRD) in combination with the Rietveld method was employed to investigate the content and phase transformation of hydration products. The main hydration products of pure MSWCM paste were C-S-H, hydroxyapatite, ettringite and C-A-S-H. With increases in curing time, the content of ettringite and C-A-S-H increased significantly. The main hydration products of MSWCM paste with MSWI fly ash were C-S-H and Friedel’s salt. The contents increased markedly with increased curing time from 21.8% to 28.0% and from 8.53% to 16.7%, respectively. Additionally, a small amount of PbHPO4 (0.51–0.96%) and lead phosphate Pb3(PO4)2 (0.14–0.51%) were detected, indicating that phosphate had an effective curing effect on lead ions. The results showed that most of the hydration reactions had started at the initial stage of curing and reacted quickly to form a large number of hydration products. The quantitative analyses of hydration products provide essential information for understanding the immobilization mechanism of MSWI fly ash in MSWCM paste.

Funder

Open Foundation of State Key Laboratory of Mineral Processing

Key Research and Development Program of Hebei Province

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3