Abstract
The attraction of games comes from the player being able to have fun in games. Gambling games that are based on the Variable-Ratio schedule in Skinner’s experiment are the most typical addictive games. It is necessary to clarify the reason why typical gambling games are simple but addictive. Also, the Multiarmed Bandit game is a typical test for Skinner Box design and is most popular in the gambling house, which is a good example to analyze. This article mainly focuses on expanding on the idea of the motion in mind model in the scene of Multiarmed Bandit games, quantifying the player’s psychological inclination by simulation experimental data. By relating with the quantification of player satisfaction and play comfort, the expectation’s feeling is discussed from the energy perspective. Two different energies are proposed: player-side (Er) and game-side energy (Ei). This provides the difference of player-side (Er) and game-side energy (Ei), denoted as Ed to show the player’s psychological gap. Ten settings of mass bandit were simulated. It was found that the setting of the best player confidence (Er) and entry difficulty (Ei) can balance player expectation. The simulation results show that when m=0.3,0.7, the player has the biggest psychological gap, which expresses that player will be motivated by not being reconciled. Moreover, addiction is likely to occur when m∈[0.5,0.7]. Such an approach can also help the developers and educators increase edutainment games’ efficiency and make the game more attractive.
Funder
Japan Society for the Promotion of Science
Reference33 articles.
1. The Behavior of Organisms: And Experimental Analysis;Skinner,1938
2. The psychopharmacology of sexual behavior;Pfaus;Psychopharmacology,1995
3. Individual Differences in Nucleus Accumbens Activity to Food and Sexual Images Predict Weight Gain and Sexual Behavior
4. Multiple forms of value learning and the function of dopamine;Balleine,2009
5. A selective role for dopamine in stimulus–reward learning
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献