Federated Learning with Pareto Optimality for Resource Efficiency and Fast Model Convergence in Mobile Environments

Author:

Jung June-Pyo1ORCID,Ko Young-Bae1ORCID,Lim Sung-Hwa2ORCID

Affiliation:

1. Department of AI Convergence Network, Ajou Univeristy, 206, World Cup-ro, Suwon-si 16499, Republic of Korea

2. Department of Multimedia, Namseoul University, 91, Daehak-ro, Cheonan-si 31020, Republic of Korea

Abstract

Federated learning (FL) is an emerging distributed learning technique through which models can be trained using the data collected by user devices in resource-constrained situations while protecting user privacy. However, FL has three main limitations: First, the parameter server (PS), which aggregates the local models that are trained using local user data, is typically far from users. The large distance may burden the path links between the PS and local nodes, thereby increasing the consumption of the network and computing resources. Second, user device resources are limited, but this aspect is not considered in the training of the local model and transmission of the model parameters. Third, the PS-side links tend to become highly loaded as the number of participating clients increases. The links become congested owing to the large size of model parameters. In this study, we propose a resource-efficient FL scheme. We follow the Pareto optimality concept with the biased client selection to limit client participation, thereby ensuring efficient resource consumption and rapid model convergence. In addition, we propose a hierarchical structure with location-based clustering for device-to-device communication using k-means clustering. Simulation results show that with prate at 0.75, the proposed scheme effectively reduced transmitted and received network traffic by 75.89% and 78.77%, respectively, compared to the FedAvg method. It also achieves faster model convergence compared to other FL mechanisms, such as FedAvg and D2D-FedAvg.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3