Spatio-Temporal Interpolation and Bias Correction Ordering Analysis for Hydrological Simulations: An Assessment on a Mountainous River Basin

Author:

Skoulikaris CharalamposORCID,Venetsanou PanagiotaORCID,Lazoglou GeorgiaORCID,Anagnostopoulou ChristinaORCID,Voudouris KonstantinosORCID

Abstract

Triggering hydrological simulations with climate change gridded datasets is one of the prevailing approaches in climate change impact assessment at a river basin scale, with bias correction and spatio-temporal interpolation being functions routinely used on the datasets preprocessing. The research object is to investigate the dilemma arisen when climate datasets are used, and shed light on which process—i.e., bias correction or spatio-temporal interpolation—should go first in order to achieve the maximum hydrological simulation accuracy. In doing so, the fifth generation of the European Centre for Medium Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5) temperature and precipitation products of 9 × 9 km spatial resolution, which are considered as the reference data, are initially compared with the same hindcast variables of a regional climate model of 12.5 × 12.5 km spatial resolution over a specific case study basin and for a 10-year period (1991–2000). Thereafter, the climate model’s variables are (a) bias corrected followed by their spatial interpolation at the reference resolution of 9 × 9 km with the use of empirical quantile mapping and spatio-temporal kriging methods respectively, and (b) spatially downscaled and then bias corrected by using the same methods as before. The derived outputs from each of the produced dataset are not only statistically analyzed at a climate variables level, but they are also used as forcings for the hydrological simulation of the river runoff. The simulated runoffs are compared through statistical performance measures, and it is established that the discharges attributed to the bias corrected climate data followed by the spatio-temporal interpolation present a high degree of correlation with the reference ones. The research is considered a useful roadmap for the preparation of gridded climate change data before being used in hydrological modeling.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3