Response of Fine-Root Traits of Populus tomentosa to Drought in Shallow and Deep Soil

Author:

Tan Jianbiao12ORCID,Yu Weichen12,Liu Yang12,Guo Youzheng12,Liu Nan3,Fu Haiman4,Di Nan5,Duan Jie12ORCID,Li Ximeng6,Xi Benye12ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Silviculture and Conservation, Beijing Forestry University, Beijing 100083, China

2. Key Laboratory for Silviculture and Forest Ecosystem in Arid- and Semi-Arid Region of State Forestry and Grassland Administration, Beijing 100083, China

3. Forestry Development Center of Donge County, Liaocheng 252037, China

4. Planning and Design Institute of Forest Products Industry, National Forestry and Grassland Administration, Beijing 100010, China

5. School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China

6. College of Life and Environmental Science, Minzu University of China, Beijing 100081, China

Abstract

Understanding the response characteristics of fine roots to soil drought of different degrees is essential for revealing the ecological adaptability of trees to different water environments and diverse plant resource absorption strategies. This study focused on a Chinese white poplar (Populus tomentosa) plantation stand, which gradually experienced the process of deep soil drying. In 2019 and 2021, by measuring the fine-root length density (FRLD), mean root diameter (MRD), specific root length (SRL), and root tissue density (RTD) of 1920 root samples and continuously monitoring the soil water content (SWC) in 0–600 cm soil layers, we explored the response characteristics of fine-root distributions and morphological traits relative to soil drought of different degrees. The results showed that P. tomentosa primarily changed the fine-root vertical distribution rather than the total amount of fine roots for coping with soil drought of different degrees. Shallow soil drought induced more fine-root distributions in the deep soil layer, while drought in both shallow and deep soil further aggravated this trend. Shallow soil drought restrained shallow fine-root growth, yet deep soil drought promoted deep fine-root growth. The very deep fine roots (400–600 cm) were more sensitive to soil drought than shallow fine roots. The shallow soil drought significantly increased the SRL of very deep fine roots; in contrast, when deep soil drought also occurred, the MRD and SRL significantly increased and decreased, respectively. In addition, fine-root morphological traits exhibited significant vertical spatial and temporal variation. MRD increased and then decreased, and the RTD gradually decreased with depth, while SRL had an increased trend in the very deep soil layer (400–600 cm). When the rainy season came, MRD and SRL increased and decreased, respectively. In conclusion, when facing gradual deep soil drying, P. tomentosa will use a large range of rooting patterns to meet the water demand of the canopy. These patterns range from “drought tolerant strategies” by distributing more fine roots in the deeper soil layer where water is abundant to “drought tolerant strategies” by changing very deep fine-root morphological traits to improve water-absorbing and transporting efficiencies. Our findings provide insight into the ecological adaption strategy of tree root systems relative to soil drought of different degrees in arid and semi-arid regions and provide crucial theoretical support for developing water management technologies to cope with deep soil drying under climate change.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3