Development of Nanocrystal Compressed Minitablets for Chronotherapeutic Drug Delivery

Author:

Sreeharsha NagarajaORCID,Naveen Nimbagal Raghavendra,Anitha Posina,Goudanavar Prakash S.ORCID,Ramkanth SundarapandianORCID,Fattepur SantoshORCID,Telsang Mallikarjun,Habeebuddin Mohammed,Answer Md. KhalidORCID

Abstract

The present work aimed to develop a chronotherapeutic system of valsartan (VS) using nanocrystal formulation to improve dissolution. VS nanocrystals (VS-NC) were fabricated using modified anti-solvent precipitation by employing a Box–Behnken design to optimize various process variables. Based on the desirability approach, a formulation containing 2.5% poloxamer, a freezing temperature of −25 °C, and 24 h of freeze-drying time can fulfill the optimized formulation’s requirements to result in a particle size of 219.68 nm, 0.201 polydispersity index, and zeta potential of −38.26 mV. Optimized VS-NC formulation was compressed (VNM) and coated subsequently with ethyl cellulose and HPMC E 5. At the same time, fast dissolving tablets of VS were designed, and the best formulation was loaded with VNM into a capsule size 1 (average fill weight—400–500 mg, lock length—19.30 mm, external diameter: Cap—6.91 mm; Body—6.63 mm). The final tab in cap (tablet-in-capsule) system was studied for in vitro dissolution profile to confirm the chronotherapeutic release of VS. As required, a bi-pulse release of VS was identified with a lag time of 5 h. The accelerated stability studies confirmed no significant changes in the dissolution profiles of the tab in cap system (f2 similarity profile: >90). To conclude, the tab in cap system was successfully developed to induce a dual pulsatile release, which will ensure bedtime dosing with release after a lag-time to match with early morning circadian spikes.

Funder

King Faisal University

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3