Combined Inhibition of Bcl2 and Bcr-Abl1 Exercises Anti-Leukemia Activity but Does Not Eradicate the Primitive Leukemic Cells

Author:

Massimino MicheleORCID,Vigneri Paolo,Stella StefaniaORCID,Tirrò ElenaORCID,Pennisi Maria Stella,Parrinello Laura Nunziatina,Vetro CalogeroORCID,Manzella Livia,Stagno FabioORCID,Di Raimondo Francesco

Abstract

Background: The management of Philadelphia Chromosome-positive (Ph+) hematological malignancies is strictly correlated to the use of BCR-ABL1 tyrosine kinase inhibitors (TKIs). However, these drugs do not induce leukemic stem cells death and their persistence may generate a disease relapse. Published reports indicated that Venetoclax, a selective BCL2 inhibitor, could be effective in Ph+ diseases, as BCL2 anti-apoptotic activity is modulated by BCR-ABL1 kinase. We, therefore, investigated if BCL2 inhibition, alone or combined with Nilotinib, a BCR-ABL1 inhibitor, affects the primitive and committed Ph+ cells survival. Methods: We used Ph+ cells isolated from leukemic patients at diagnosis. To estimate the therapeutic efficacy of BCL2 and BCR-ABL1 inhibition we employed long-term culture, proliferation and apoptosis assay. Immunoblot was used to evaluate the ability of treatment to interfere with the down-stream targets of BCR-ABL1. Results: Blocking BCL2, we observed reduced proliferation and clonogenic potential of CML CD34-positive cells and this cytotoxicity was improved by combination with BCR-ABL1 inhibitor. However, BCL2 inhibition, alone or in combination regiment with BCR-ABL1 inhibitor, did not reduce the self-renewal of primitive leukemic cells, while strongly induced cell death on primary Ph+ Acute Lymphoblastic Leukemia (ALL). Conclusion: Our results suggest that primitive CML leukemic cells are not dependent on BCL2 for their persistence and support that committed CML and Ph + ALL cells are dependent by BCL2 and BCR-ABL1 cooperation for their survival. The antileukemic activity of BCL2 and BCR-ABL1 dual targeting may be a useful therapeutic strategy for Ph+ ALL patients.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3