Abstract
Quantifying the phenological variations of Populus euphratica Olivier (P. euphratica) resulting from climate change is vital for desert ecosystems. There has previously been great progress in the influence of climate change on vegetation phenology, but knowledge of the variations in P. euphratica phenology is lacking in extremely arid areas. In this study, a modified method was proposed to explore P. euphratica phenology and its response to climate change using 18-year Global Land Surface Satellite (GLASS) leaf area index (LAI) time series data (2000–2017) in the upper Tarim River basin. The start of the growing season (SOS), length of the growing season (LOS), and end of the growing season (EOS) were obtained with the dynamic threshold method from the reconstructed growth time series curve by using the Savitzky–Golay filtering method. The grey relational analysis (GRA) method was utilized to analyze the influence between the phenology and the key climatic periods and factors. Importantly, we also revealed the positive and negative effects between interannual climate factors and P. euphratica phenology using the canonical correlation analysis (CCA) method, and the interaction between the SOS in spring and EOS in autumn. The results revealed that trends of P. euphratica phenology (i.e., SOS, EOS, and LOS) were not significant during the period from 2000–2017. The spring temperature and sunshine duration (SD) controlled the SOS, and the EOS was mainly affected by the temperature and SD from June–November, although the impacts of average relative humidity (RH) and precipitation (PR) on the SOS and EOS cannot be overlooked. Global warming may lead to SOS advance and EOS delay, and the increase in SD and PR may lead to earlier SOS and later EOS. Runoff was found to be a more key factor for controlling P. euphratica phenology than PR in this region.
Funder
Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agri-cultural Sciences
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献