Low-Cost Online Monitoring System for the Etching Process in Fiber Optic Sensors by Computer Vision

Author:

Rodríguez-Rodríguez Wenceslao Eduardo1ORCID,Puente-Sujo Jesús Abraham1,Rodríguez-Rodríguez Adolfo Josué1ORCID,Matias Ignacio R.2ORCID,Vargas-Requena David Tomás1ORCID,García-Garza Luis Antonio1

Affiliation:

1. Reynosa Rodhe Multidisciplinary Academic Unit, Department of Computational Sciences and Technologies, Computational Systems Academy, Autonomous University of Tamaulipas (UAT), Reynosa-San Fernando Highway, Reynosa 88779, Tamaulipas, Mexico

2. Department of Electrical, Electronic and Communications Engineering, Institute of Smart Cities (ISC), Public University of Navarre (UPNA), Campus de Arrosadia, 31006 Pamplona, Spain

Abstract

The present research exposes a novel methodology to manufacture fiber optic sensors following the etching process by Hydrofluoric Acid deposition through a real-time monitoring diameter measurement by computer vision. This is based on virtual instrumentation developed with the National Instruments® technology and a conventional digital microscope. Here, the system has been tested proving its feasibility by the SMS structure diameter reduction from its original diameter of 125 μ until approximately 42.5 μm. The results obtained have allowed us to demonstrate a stable state behavior of the developed system during the etching process through diameter measurement at three different structure sections. Therefore, this proposal will contribute to the etched fiber optic sensor development that requires reaching an enhanced sensitivity. Finally, to demonstrate the previously mentioned SMS without chemical corrosion, and the etched manufactured SMS, both have been applied as glucose concentration sensors.

Funder

National Science and Technology Council

Academic Multidisciplinary Reynosa-Rodhe Unit

Autonomous University of Tamaulipas

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3