Removal and Recovery of Dissolved Oil from High-Salinity Wastewater Using Graphene–Iron Oxide Nanocomposites

Author:

Diraki AhmadORCID,Mackey Hamish R.ORCID,McKay GordonORCID,Abdala AhmedORCID

Abstract

We report the synthesis of reduced graphene oxide (rGO)-α-Fe2O3 nanocomposite and its application to remove and recover dissolved oil from a high-salinity oil–water emulsion in batch and column/breakthrough setups. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption characterized the synthesized nanocomposite’s structure, morphology, and surface properties. Both batch and continuous breakthrough adsorption studies were investigated. The effect of the adsorption parameters on the adsorption capacity and removal efficiency was analyzed. The rGO-Fe2O3 nanocomposite (rGO-Fe2O3-NC) demonstrated a superior adsorption capacity, both when measured experimentally (1213 mg/g) and predicted using the Freundlich isotherm (1301 mg/g). The adsorption process followed pseudo-second-order kinetic, and the rGO-Fe2O3-NC exhibited a very rapid removal, with more than 60% of oil being removed within 10 min. Breakthrough confirmed the exceptional removal capacities with good regeneration and cycling ability under a short contact time. Moreover, the adsorption capacity was enhanced with an emulsion salinity of up to 100,000 ppm, confirming the suitability for high-salinity wastewater.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Petroleo: Prospección y Perforación;Kraus,2012

2. Produced Water from Oil-Gas Plants: A Short Review on Challenges and Opportunities

3. A White Paper Describing Produced Water from Production of Crude Oil, Natural Gas, and Coal Bed Methane;Veil,2004

4. Technical Summary of Oil & Gas Produced Water Treatment Technologies;Arthur,2005

5. Produced water treatment technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3