Ensembles of Biologically Inspired Optimization Algorithms for Training Multilayer Perceptron Neural Networks

Author:

Floria Sabina-AdrianaORCID,Gavrilescu Marius,Leon FlorinORCID,Curteanu Silvia

Abstract

Artificial neural networks have proven to be effective in a wide range of fields, providing solutions to various problems. Training artificial neural networks using evolutionary algorithms is known as neuroevolution. The idea of finding not only the optimal weights and biases of a neural network but also its architecture has drawn the attention of many researchers. In this paper, we use different biologically inspired optimization algorithms to train multilayer perceptron neural networks for generating regression models. Specifically, our contribution involves analyzing and finding a strategy for combining several algorithms into a hybrid ensemble optimizer, which we apply for the optimization of a fully connected neural network. The goal is to obtain good regression models for studying and making predictions for the process of free radical polymerization of methyl methacrylate (MMA). In the first step, we use a search procedure to find the best parameter values for seven biologically inspired optimization algorithms. In the second step, we use a subset of the best-performing algorithms and improve the search capability by combining the chosen algorithms into an ensemble of optimizers. We propose three ensemble strategies that do not involve changes in the logic of optimization algorithms: hybrid cascade, hybrid single elite solution, and hybrid multiple elite solutions. The proposed strategies inherit the advantages of each individual optimizer and have faster convergence at a computational effort very similar to an individual optimizer. Our experimental results show that the hybrid multiple elite strategy ultimately produces neural networks which constitute the most dependable regression models for the aforementioned process.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Obtaining Bricks Using Silicon-Based Materials: Experiments, Modeling and Optimization with Artificial Intelligence Tools

2. No free lunch theorems for optimization

3. Neural Architecture Search: A Survey;Elsken;J. Mach. Learn. Res.,2019

4. Design and implementation of a neighborhood search biogeography-based optimization trainer for classifying sonar dataset using multi-layer perceptron neural network

5. A New Metaheuristic Football Game Inspired Algorithm;Fadakar;Proceedings of the 1st Conference on Swarm Intelligence and Evolutionary Computation (CSIEC 2016), Higher Education Complex of Bam,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3