Abstract
We propose in this paper the use of artificial intelligence, especially deep learning algorithms, for the isotopic ratio determination for hydrogen–deuterium mixtures. Our approach is based on the Balmer-α line emitted by hydrogen and deuterium, but unlike the standard method, it does not consist of fitting the Hα/Dα line spectra. Instead, only some basic spectroscopic features such as the line peak-to-dip wavelength separation, peak-to-peak and dip-to-peak intensity ratios of the Zeeman–Doppler-broadened Hα/Dα line spectra are used by the regression algorithm for training. We demonstrate the proof-of-principle of our approach by applying deep learning from the open-access machine-learning platform TensorFlow to Hα/Dα line profiles, which we have synthetized with pre-determined parameters such as neutral temperatures, the magnetic field strength and the H/(H+D) isotopic ratio. The used regression algorithm allowed us to retrieve with a good accuracy the isotopic ratios used for the synthetized line profiles.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献