Developing Predictive Models of Collapse Settlement and Coefficient of Stress Release of Sandy-Gravel Soil via Evolutionary Polynomial Regression

Author:

Ghanizadeh Ali RezaORCID,Delaram AliORCID,Fakharian PouyanORCID,Armaghani Danial JahedORCID

Abstract

The collapse settlement of granular soil, which brings about considerable deformations, is an important issue in geotechnical engineering. Several factors are involved in this phenomenon, which makes it difficult to predict. The present study aimed to develop a model to predict the collapse settlement and coefficient of stress release of sandy gravel soil through evolutionary polynomial regression (EPR). To achieve this, a dataset containing 180 records obtained from a large-scale direct shear test was used. In this study, five models were developed with the secant hyperbolic, tangent hyperbolic, natural logarithm, exponential, and sinusoidal inner functions. Using sand content (SC), normal stress (σn), shear stress level (SL), and relative density (Dr) values, the models can predict the collapse settlement (∆H) and coefficient of stress release (CSR). The results indicated that the models developed with the exponential functions were the best models. With these models, the values of R2 for training, testing, and all data in the prediction of collapse settlement were 0.9759, 0.9759, and 0.9757, respectively, and the values of R2 in predicting the coefficient of stress release were 0.9833, 0.9820, and 0.9833, respectively. The sensitivity analysis also revealed that the sand content (SC) and relative density (Dr) parameters had the highest and lowest degrees of importance in predicting collapse settlement. In contrast, the Dr and SC parameters showed the highest and lowest degrees of importance in predicting the coefficient of stress release. Finally, the conducted parametric study showed that the developed models were in line with the results of previous studies.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Study on collapse behaviors of coarse grained soils

2. Compressibility of Broken Rock and the Settlement of Rockfills;Sowers;Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering,1965

3. A back-analysis of Beliche Dam

4. Simulation of collapse settlement of first filling in a high rockfill dam

5. Potential Collapse for Sandy Compacted Soil during Inundation;Shalaby;Int. J. Innov. Sci. Eng. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3